Théorème 4. Soient A une matrice $m \times n$, $\vec{b} \in \mathbb{R}^m$ et $\vec{x} \in \mathbb{R}^n$. Soient $\vec{a}_1, \ldots, \vec{a}_n \in \mathbb{R}^m$ les colonnes de A. Alors l'ensemble des solutions de $A\vec{x} = \vec{b}$ est égal à l'ensemble des solutions de

1.
$$x_1 \vec{a_1} + \dots + x_n \vec{a_n} = \vec{b}$$
 (forme ver torielle)

Existence des solutions d'une équation matricielle

Considérons une matrice A de taille $m \times n$. Alors $\underline{A\vec{x} = \vec{b}}$ admet une solution $\vec{s} \in \mathbb{R}^n$

DONC:
$$||A\vec{x}=\vec{b}|| <=> \vec{b}$$
 est comb. Lin. des colonnes de A

Le théorème suivant précise dans quelles conditions la matrice A correspond à un système compatible :

Théorème 5. Soit A une matrice $m \times n$. Alors les propriétés suivantes sont équivalentes :

- 1. Pour tout $\vec{b} \in \mathbb{R}^m$, l'équation matricielle $A\vec{x} = \vec{b}$ admet au moins une solution;
- 2. Pour tout $\vec{b} \in \mathbb{R}^m$, \vec{b} est une combinaison linéaire des colonnes de la matrice des coefficients A;
- 3. Les colonnes de A engendrent \mathbb{R}^m ;
- 4. Chaque ligne de A possède un pivot.

Exemple Soit S le système

$$S = \begin{cases} x_1 - 2x_2 + x_3 = b_1 \\ x_2 - 4x_3 = b_2 \\ -4x_1 + 5x_2 + 9x_3 = b_3 \end{cases}$$

avec

$$\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \in \mathbb{R}^3$$
. teme constant que Conque

$$\begin{pmatrix}
1 & -2 & 1 & | b_1 \\
0 & 1 & -4 & | b_2 \\
-4 & -4 & 9 & | b_3
\end{pmatrix}
\sim \cdots \sim
\begin{pmatrix}
1 & 0 & 0 & | 29 & b_1 + 23 & b_2 & f & 2 & b_3 \\
0 & 0 & 0 & 0 & | 46 & b_1 + 13 & b_2 & f & 46 & b_3 \\
0 & 0 & 0 & 0 & | 46 & 13 & b_2 & f & 63
\end{pmatrix}$$

on a 3 pivots et 3 variables de base x1, x2, x3 = il 7 a une sol. unique

"pour tout"

(=)
$$\forall \vec{b} \in \mathbb{R}^3$$
, \vec{b} est sere comb. lin. des colonnes de A.

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \lambda_3 \vec{a_3} = \vec{b}$$

les la sont donné n par (*)

Suite de l'exemple

De plus,

4 b∈ R³, Az = b est compatible

(=) ye n'z a pas de ligne de type

(0... 0) +) avec + + 0

dans la forme ER de la matria augmentée.

(=> ye y a un pivot dans chaque ligre de A.

Remarques

1) Se A possède une ligne sans pivot, alas on peut trouver 6 pour lequel Az = 6 est incompatible.

En effet: $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ ~ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ & ligne man pivot Alors pour $\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, le protême est incompatible.

2) Si l'une des conditions du th.5 est satisfaile, Ane possède pas forcément un pivot par colonne,

A: (12)

pas use
colonne pivot

$$(12) {\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}} = b_1$$

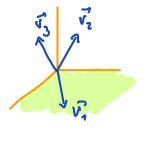
 $(12) {\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}} = b_1$

az est une variable libre et le motème est compatible V by. Preuve du théorème 5 Notons $\vec{S} = \begin{pmatrix} 0.1 \\ \vdots \\ 0.0 \end{pmatrix} \in \mathbb{R}^2$ une oblition du Azi- \vec{b} .

- (1) => (2) Due qu'au mains un à existe (avec Aā=b) correspond au fait que b est comb. Lin. des Colonnes de A avec les oi comme coefficients.
- (z) (≥) (3) de coule de la deif. de la notion de span: Span 7 and j = TR
- (1) (1) · Si A a des pivots dans toutes lignes, alors il existe une solution
 - · Si on a une ligne pans pivot, alors on peut choisir un b pour lequel il n'existe pas de solution.

Exemple 1

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$



Molonne sans pivot

$$|x_1 + x_3 = b_1|$$
 $|x_2 + x_3 = b_2|$
 $|x_2 + x_3 = b_2|$
 $|x_2 + x_3 = b_2|$

(1) Ok car: $\frac{t \in \mathbb{R}}{t \in \mathbb{R}}$ un paramètre. Alors pour tout $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ une solution est donnée par $\vec{o} = \begin{pmatrix} b_1 - t \\ b_2 - t \end{pmatrix} =$

Suite de l'exemple 1

(2) Ou car
$$\forall \vec{b}: \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
, on a

$$\vec{b}: \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} (b_1 - b_1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 - b_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} (b_2 -$$

(3) span
$$(\frac{1}{0}), (\frac{0}{1}), (\frac{1}{1}) = \mathbb{R}^2$$
 vois à course de (2)

(2) est foux cor
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \neq \lambda_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

(3) Span
$$\neq \mathbb{R}^3$$
 car $\binom{0}{2}$ of span

1.6 Forme de l'ensemble des solutions d'une équation matricielle

A) Étude des solutions d'un système homogène

Soit A une matrice $m \times n$ et $\vec{x} \in \mathbb{R}^n$. On considère le système homogène $A\vec{x} = \vec{0}$, où $\vec{0} \in \mathbb{R}^m$. On a vu que le système est toujours consistant. Plus précisément, on a soit

- 1) une unique solution (o = o , solution bissale)
- 2) une infinité de solutions, comprenant la solution triviale.

Résultat

Un système homogène $A\vec{x} = \vec{0}$ admet une solution non-triviale si et seulement si on a au moins une variable libre.

Exemple 1

Soit le système homogène

$$S = \begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 4x_1 + 5x_2 + 6x_3 = 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 1 & 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 6x_1 + 7x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 7x_1 + 2x_2 + 8x_3 = 0 \end{cases}$$

$$\begin{cases} 2 & 3 & 0 \\ 7x_2 + 2x_3 + 2$$

Exemple 2
$$\begin{cases} 2x_1 + 4x_2 - 6x_3 = 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$$

exercice: écrire la solution générale sous deux formes différentes (closses des représentants

différents)

$$\begin{pmatrix}
2 & 4 & -6 & | & 0 \\
4 & 8 & -10 & | & 0
\end{pmatrix}
\sim
\begin{pmatrix}
4 & 2 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 \neq 2x_2 \leq 0 \\
x_3 \leq 0
\end{pmatrix}$$

$$\frac{\vec{\nabla}}{\vec{\nabla}} = \frac{\vec{\nabla}}{\vec{\nabla}} = \frac{\vec{\nabla}}{\vec{\nabla} = \frac{\vec{\nabla}}{\vec{\nabla}} = \frac{\vec{\nabla}}{\vec{\nabla}} = \frac{\vec{\nabla}}{\vec{\nabla}} = \frac{\vec{\nabla}}{\vec{\nabla}}$$

$$\vec{0} = \begin{pmatrix} -2t \\ t \\ 0 \end{pmatrix} = t \begin{pmatrix} -2t \\ 4 \\ 0 \end{pmatrix}$$

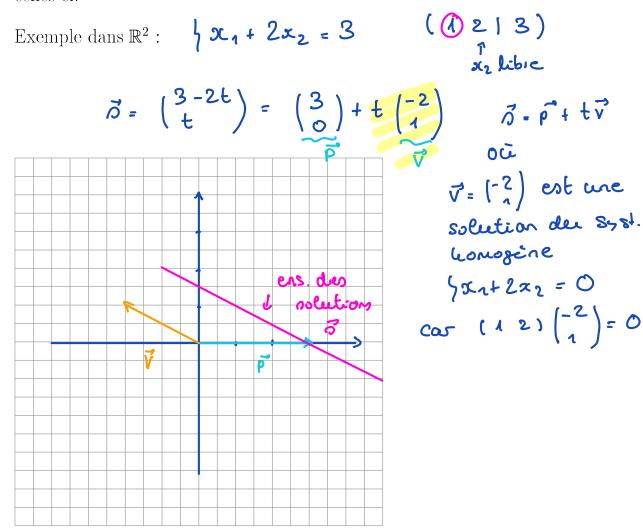
Choix 2: paramète u pour
$$x_1$$
, $\vec{o} = \begin{pmatrix} u \\ -1/2 u \end{pmatrix} = u \begin{pmatrix} 1/2 u \\ 0 \end{pmatrix}$

On a $S = \text{open} \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\} = \text{open} \left\{ \begin{pmatrix} -1/2 \\ -1/2 \end{pmatrix} \right\}$

Remarque: Vetwont des coefficients proportionnels.

B) Étude des solutions d'un système non-homogène

On va s'intéresser à des systèmes non-homogènes $A\vec{x} = \vec{b}$ (où $\vec{b} \neq \vec{0}$) compatibles admettant une infinité de solutions et décrire la forme de celles-ci.



Théorème 6. Soient A une matrice $m \times n$ et $\vec{b} \in \mathbb{R}^m$ tels que $A\vec{x} = \vec{b}$ // admette une solution $\vec{p} \in \mathbb{R}^n$. Alors l'ensemble des solutions de $A\vec{x} = \vec{b}$ est l'ensemble des vecteurs de la forme

$$\vec{w} = \vec{p} + (\vec{w} - \vec{p})$$
. On vérifie que $A\vec{v} = \vec{0}$:

 $A(\vec{w}-\vec{p}) = A\vec{w} - A\vec{p} = \vec{b}-\vec{b}=\vec{0}$. Donc \vec{v} est bien une pol du système homogène.

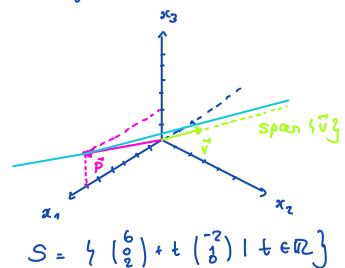
Exemple dans
$$\mathbb{R}^3$$
:

$$S = \begin{cases} 2x_1 + 4x_2 - 6x_3 = 0 \\ 4x_1 + 8x_2 - 10x_3 = 4 \end{cases}$$

$$\begin{pmatrix} 2 & 4 & -6 & | & 0 \\ 4 & 8 & -40 & | & 4 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & 0 & | & 6 \\ 0 & 0 & 0 & | & 2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 + 2x_2 = 6 & & & \\ x_3 = 2 & & & \\ \end{pmatrix} \stackrel{\text{The line}}{\Rightarrow} \begin{pmatrix} 6 - 2t \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix} \qquad \text{EeR}$$

où v est une ool. du orstène Ax=0, et tv est la nol. générale de Az=O.



géonétiquement, on pait une translation de p der opan jûj